5Gを活用した救急医療の実証実験実施 聖マリアンナ医大病院

 トランスコスモス、聖マリアンナ医大、NTTドコモ、川崎市の4者コンソーシアムは、6日から川崎市の聖マリアンナ医大病院の救命救急センターで5Gを活用した救急医療の実証実験を開始する。同実証は、総務省が公募した「課題解決型ローカル5G等の実現に向けた開発実証」に採択され、実施するもの。
 近年、人口高齢化の進展などにより救急医療需要が急速に高まっており、加えて集団災害や新興感染症拡大などにも対応できるよう、救急医療体制のさらなる強化は、持続可能な地域医療構築を進める上で喫緊の課題となっている。
 また、聖マリアンナ医大病院のように、多数の救急搬送を受け入れている医療機関において、医師の労働時間が長時間となる傾向が指摘されており、適切な医療資源の配分が必要となっている。
 これら地域・救急医療の抱える課題解決に向けて、救急医療の業務効率化と長時間労働の改善をめざし、同実証では、ドコモの5Gサービスの活用により、多数対多数の高精細映像伝送による医師・病院間のリアルタイムコミュニケーションや、医療機器からの大容量動画データの転送、およびAIを活用した処置状況の判定を可能にする①~⑤のシステムの構築と実証を行う。
① 360度カメラなどによる俯瞰(ふかん)的な映像共有とスマートグラスを利用した医師の手元映像共有

② 院内をストレッチャーで移動する患者の映像共有

③ 遠隔CT画像の共有

④ 大容量X線動画データの転送

⑤ 気管内チューブなど位置のAI判定

 今後、4者コンソーシアムでは本実証の結果を踏まえて、システム運用上のさらなる課題や解決方法を検討した上で、聖マリアンナ医大病院へのシステム本格導入を行い、スムーズかつ効率的に多数の患者を受け入れられる体制の維持や、医療従事者の業務効率化と長時間労働の改善の実現を模索していく。
 さらに、これらの取り組みにより確認された成果などについて、国にも報告を行い、地域医療への反映・普及に努める。

各実証実験の詳細は、次の通り。

① 360度カメラなどによる俯瞰的な映像共有とスマートグラスを利用した医師の手元映像共有

◆現状:重症外傷患者の受け入れ時や多数の傷病者発生時には、多くの医師やスタッフが招集されるため、すぐには患者を診ることができない医師が多く、運用には改善の余地がある。

◆実証詳細:重症外傷患者の救急外来処置の遠隔観察・把握と、多数の傷病者発生時における複数患者の診察状況の遠隔観察・把握の2場面を想定して実験を行う。スマートグラスによる治療医師の手技や患部の様子に加え、360度カメラなどによるバイタルモニターや患者からの申し立て・これまでの経過などを記載したホワイトボード、対応しているスタッフなども映像を通して情報共有する。

◆期待される効果:遠隔にいる医師は、現場にいなくても患者の様子が分かるため必要なタイミングで現場へ出向けるようになり、現場滞在時間の減少、現場に集まる医師数の削減が見込める。また、より多くの医師、医療スタッフが現場の情報を共有できるようになる。
 現場と指令室と搬送先(手術室、検査室)とのリアルタイムな情報共有が可能となることで、患者ごとの重症度や必要とされる処置に合わせた治療法、治療優先順位、治療・検査に向かうタイミングなどの最適化・効率化が図れる。

② 院内をストレッチャーで移動する患者の映像共有

◆現状:救急患者のストレッチャーでの移動時に、容体の急変に備えて医師や看護師が複数名付き添うため、多くの人的稼働がかかっている。

◆実証詳細:院内をストレッチャーで移動する救急患者の映像を撮影し、遠隔にいる医師のタブレットへ5Gを介してリアルタイムに映像を送ります。重症患者に多くあるICUから血管撮影室への移動中など、医師が少ないエリアに移動しているときを想定し、移動中の患者の状況を遠隔からでも把握できるようにする。

◆期待される効果:遠隔から医師がリアルタイムに状況を把握することで、医療行為を行えないスタッフを移動担当者に選定しても緊急時にはすぐに医師が対応できるため、移動担当者の人数削減・精神的負担の軽減を実現する。

③ 遠隔CT画像の共有

◆現状:新型コロナウイルス肺炎などの罹患(りかん)の有無や外傷性変化はすぐに判定しなければならないにもかかわらず、画像の生成と専用の画像配信システムへの転送には時間が長くかかるため迅速な診断が行えない。
 また、専用の画像配信システムで診断する必要があるため、医師の診断室への移動時間や、診断室での待ち時間が発生している。

◆実証詳細:CT撮影後にモニターに表示されるCT画像を4Kカメラで撮影共有し、画像診断医がタブレットを介してリアルタイムにその画像を確認する。5Gによる高精細なリアルタイム映像共有により、画像閲覧システムへの配信を待たずに画像をもとに診断を行えるようにする。

◆期待される効果:CT画像のリアルタイムな映像共有によって、医師の移動時間および待ち時間の軽減、画像診断の迅速化による業務効率化が見込め、かつ複数医師の同時関与による診断の質の向上を実現する。

④ 大容量X線動画データの転送

◆現状:X線動画データの転送には、ICUなどの患者の元でX線動画を撮影し、そこから離れた場所にある画像生成を専用に行うサーバ端末まで赴きデータ転送作業を実施する必要があるため、撮影から画像診断までに1時間以上を要している。

◆実証詳細:5Gの特性を生かし、これまで困難であった大容量動画データの無線伝送ができるかを検証する。

◆期待される効果:将来、医療機器のモビリティ化が進んだ際に、大容量動画データの無線伝送ができることで場所を問わずリアルタイムな画像情報(X線動態画像)の解析が可能になる。これにより患者の移動が不要となり、患者の院内移動による負担、医療スタッフの患者移動にかかる稼働の削減が見込める。

⑤ 気管内チューブなど位置のAI判定

◆現状:重症患者では、呼吸維持や生命維持のため気管内チューブなどの器具が装着されている。これらが体内の適正な位置にあることを確認するにはX線画像を撮影する必要がある。X線画像はほとんどの場合別の目的で撮影されており、医師がその診断に加えて気管内チューブの位置確認のため二重で画像診断を行っている。

◆実証詳細:モニターに映し出されたX線画像を4Kカメラで撮影し、大容量映像情報を5Gでクラウド上にアップロードする。続いてAIによる判定を行い、タブレットなどのブラウザ上で画像の解析結果をリアルタイムに出力する。

◆期待される効果:5Gを活用することで高精細な映像伝送が可能となり、AI解析において必要な解像度の確保が可能となる。4Kカメラなどの可搬性がある機器を使用するため、院内に既に導入されている画像配信システムに縛られない柔軟なシステムの実現につながる。これにより、的確な診断を担保しつつ医師の稼働削減が見込める。

タイトルとURLをコピーしました