尿・唾液などを用いたヘルスケア分野のケミカルバイオセンサー開発等に期待
国立研究開発法人情報通信研究機構(NICT)は15日、未来ICT研究所バイオICT研究室の田中裕人主任研究員、小嶋寛明室長らの研究グループが、走化性を持つバクテリアを用いた化学情報識別技術を開発したと発表した。
単細胞のバクテリアも、化学物質をセンシングする能力を持っている。その中でも注目すべきものが、周囲の環境中に存在する多様な化学物質に応答して動きを変化させる走化性と呼ばれる性質だ。
研究グループでは、走化性を持つバクテリアのうち、多くの知見が蓄積されている大腸菌を光学顕微鏡システムで観察して走化性の変化を自動で高精度に数値化する方法を開発。
数値化したデータを機械学習によって解析することで、大腸菌の振る舞いから周囲の化学情報を味見するように識別することに成功した。
将来的には、我々を取り囲む様々な化学物質を識別し、それらが生き物や人に及ぼす影響を定量的に評価するケミカルバイオセンサーの開発につなげることが期待できる。同成果は、2月22日(日本時間)に、英国科学雑誌「Scientific Reports」に掲載された。
「味覚」や「嗅覚」は、生き物にとって食物が食べられるかどうかを判断し、我々の生命活動を維持するために重要な役割を果たす「センシング」能力である。人の知覚に関わる情報通信技術は、これまで、「視覚」と「聴覚」の領域を中心に発展してきた。
NICT未来ICT研究所神戸フロンティア研究センターでは、バイオマテリアルを活用して、情報通信技術を味覚と嗅覚に代表されるような化学物質センシングの領域にまで広げる研究開発に取り組んでいる。
田中氏らの研究グループでは、大腸菌の持つ化学物質センシング能力と機械学習を組み合わせることで、新たな化学物質情報識別技術を開発し、将来的に「ケミカルバイオセンサー」が構築できることを次の4つのステップで見いだした(図1参照)。
1、べん毛モーターの回転の向きの計測
多くのバクテリアは、環境中の化学物質を認識し、バクテリアにとって好ましいもの(誘引物質)には集まり、好ましくないもの(忌避物質)からは離れる走化性という仕組みを持つ。これは、走化性を持つバクテリアが遊泳するための運動器官「べん毛」の根元にあるモーターの回転方向が、誘引物質の場合は反時計回り、忌避物質の場合は時計回りに回転する傾向が高くなるためだ。
研究グループでは、走化性を持つバクテリアの代表として大腸菌を用い、べん毛モーターの回転の向きを効率よく正確に計測して定量化することに成功した。
2、化学物質ごとの大腸菌の動きを計測してデータベース化
次に、大腸菌に様々な化学物質を投与し、べん毛の回転の向きを計測した。ここでは、一画面当たり100個レベルの大腸菌の集団から、時計回りの動きを示すものの割合を10分間にわたり自動的に追跡した。
例えば、大腸菌が好む誘引物質をこの系に与えた場合、最初に5割程度であった時計回りの細胞の割合がほぼゼロへと変化する(図2上 誘引応答)。そのまましばらく経つと、その割合が物質投与前のレベルに戻っていく(図2上 「慣れる」過程)。
このグラフは、与えた化学物質の種類によって、異なる形状を示した(図2下参照)ため、研究グループでは、「化学物質Aの濃度Xの場合のグラフ」「化学物質Bの濃度Yの場合のグラフ」といったデータベースを作った。
3、機械学習による化学物質識別方法の構築
次に行ったのは、与えた化学物質を推定する方法の構築である。識別したい化学物質を大腸菌に与え、その時の大腸菌の動きを計測し、それが構築したデータベースのどのグラフに近いのかが分かれば、その化学物質が何であるかを識別することが可能である。ここでは、構築したデータベースを基に、機械学習を用いて識別を行う方法を構築した。
4、検証
3の識別方法により、様々な化学物質の識別を試みたところ、アミノ酸の水溶液のような単一物質溶液の識別に加え、様々な物質の混合物であるコーラの種類までも見分けることが可能であった。
この結果は、「成分がよく分からない混合物溶液を識別する」という、まるで人が舌で味を見分けるように働くケミカルバイオセンサーが作れることを意味している(図1参照)。
同研究の走化性を持つバクテリアの化学物質センシング能力と、機械学習の組合せによるフレームワークは、生き物の物差しで化学情報を識別する新しいコンセプトのセンシング技術の基礎になるものだ。
これは、飲料等の食品を対象とした識別だけではなく、尿、唾液等を用いたヘルスケア分野や、土壌、水質等を対象とした環境分野・農林水産分野における新たな観点からの評価を可能とするケミカルバイオセンサーの開発につながるものとして期待できる。
今後は、この手法の識別対象として適したサンプル、解析技術を適用するために必要なデータベースを幅広く求めることで、これまでにないセンシング技術としての有効性を示していくことが重要である。
また、今回開発した計測法の活用や、データ解析手法の応用によって、バクテリアを始めとした細胞がどのように環境中の化学情報を感じて情報処理を行っているかについての科学的な理解が深まることが期待される。
研究グループの各機関役割分担は、次の通り。
◆情報通信研究機構: コンセプトの提案、実験方法の開発、実験の遂行、データの収集・解析の実施
◆法政大学(川岸郁朗教授、曽和義幸教授): バクテリア株の供給、培養条件・アッセイ手法の提案、分子生物学・細菌学の観点からの評価
◆東京大学(岡田真人教授): データ駆動科学に基づくデータ解析手法の提案